If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12w^2+70w-12=0
a = 12; b = 70; c = -12;
Δ = b2-4ac
Δ = 702-4·12·(-12)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-74}{2*12}=\frac{-144}{24} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+74}{2*12}=\frac{4}{24} =1/6 $
| 6x-x-1=29 | | 1+5w+5-7=22 | | 7(x-9)-3=22x-231 | | 2e+6=-8 | | 24p-60=-4(1-8p) | | h(1)+5h(3)=8 | | 16j^2-484=0 | | g-14=-6 | | -13-3j=-19 | | -6x+10x+11+2=-6x+6x+1 | | 5n^2-720=0 | | 2(9m+12)=3(6m+10) | | x/4/5=45 | | X+(2x-18)+90=180 | | t−218=6. | | 6.2x–5=7.9x+3.5 | | 5x-6=-71-6x | | 7(x+4=3x+56 | | 12+w=-5 | | 24s^2-90s+66=0 | | 11(p-3=5(p+3) | | 3-3(x+5)+8x=7+1 | | (9x+63)=99 | | 1/5n-13=-2 | | x+11+28=3x-7+21 | | 8(1x+6)=80 | | -3s-18=6 | | 10k^2-1210=0 | | 18w-13w+w-w=10 | | 16-9b=-11 | | 13x-15x+8=2-24 | | 18k^2+45k-63=0 |